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Abstract

We present SchemEX, an approach and tool for a stream-based indexing and schema extraction of Linked
Open Data (LOD) at web-scale. The schema index provided by SchemEX can be used to locate distributed
data sources in the LOD cloud. It serves typical LOD information needs such as finding sources that contain
instances of one specific data type, of a given set of data types (so-called type clusters), or of instances in type
clusters that are connected by one or more common properties (so-called equivalence classes). The entire
process of extracting the schema from triples and constructing an index is designed to have linear runtime
complexity. Thus, the schema index can be computed on-the-fly while the triples are crawled and provided
as a stream by a linked data spider. To demonstrate the web-scalability of our approach, we have computed
a SchemEX index over the Billion Triples Challenge (BTC) dataset 2011 consisting of 2,170 million triples.
In addition, we have computed the SchemEX index on a dataset with 11 million triples. We use this smaller
dataset for conducting a detailed qualitative analysis. We are capable to locate relevant data sources with recall
between 71% and 98% and a precision between 74% and 100% at a window size of 100K triples observed
in the stream and depending on the complexity of the query, i.e. if one wants to find specific data types, type
clusters or equivalence classes.
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1. Introduction

Linked Open Data (LOD) [1] aims at publishing
and connecting open data on the web using the Re-
source Description Framework (RDF). Data is pro-
vided by different, connected data sources using dif-
ferent publishing strategies like static RDF docu-
ments and SPARQL endpoints [1]. Altogether, LOD
builds a huge web-scale RDF graph: the LOD cloud.
This LOD cloud does not provide a single federated
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interface to perform graph queries. In conclusion this
leads to the problem shown in Figure 1(a) that for a
given query it is not clear to which data sources this
query should be sent in order to retrieve results. For
instance, assume we wanted to find all people that are
both politicians and actors and who are married with
a model. While a query as the one shown in Listing 1
can in principle provide the desired information, it is
unclear which data source ds to address with such a
query.

Furthermore, a complete retrieval of this huge
RDF graph with currently more than 31 billion
triples1 to circumvent this problem and perform
queries locally is not feasible either. Thus, one of

1http://lod-cloud.net/
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Figure 1: Index usage for identifying relevant data sources

the challenges when working with LOD is the lack
of a concise summary or description of what kind
of data can be found in which data source and how
these data sources are connected. Such a summary is
desirable for solving many tasks in common LOD
scenarios, like searching, browsing, exploring, or
querying the LOD graph. Typical tasks in these
scenarios are, e.g., to find data sources that con-
tain instances with certain properties, to detect which
data sources are interlinked and to support the ex-
ecution of distributed queries. To address this is-
sue, some datasets provide a voiD description [2],
containing metadata information such as a SPARQL
endpoint location (void:sparqlEndpoint), ex-
ample resources (void:exampleResource), and
compositional relationships between different parts
of the data source using the dcterms:hasPart and
dcterms:isPartOf properties of Dublin Core2.
However, even though voiD has found its way into
the SPARQL 1.1 Service Description [3], to date
only a fraction of datasets are publishing voiD de-
scriptions, mostly triple store datasets such as DB-
Pedia [4]. Neither does voiD contain explicit schema
information. Thus, it is not sufficient to support all
of the above tasks. A more precise index structure is

2Dublin Core Metadata Initiative, http://
dublincore.org/

1 SELECT ?x FROM ds WHERE {
2 ?x r d f : type yago : AmericanFi lmActors .
3 ?x r d f : type dbpedia−owl : P o l i t i c i a n .
4 ?x dbpprop : spouse ?y .
5 ?y r d f : type fbase : Model ( person ) .
6 }

Listing 1: Example SPARQL query example on the LOD cloud

desirable that allows to search for data sources that
contain instances with certain properties or to iden-
tify relevant data sources for a given query.

Our solution to this problem is to extract a con-
cise schema from the LOD cloud with a suitable
structure to be used as an index. In our context,
schema extraction means to abstract RDF instances
to RDF schema concepts that represent instances
with the same properties. For using this schema as
an index, each schema concept is mapped to data
sources that contain instances with corresponding
properties. This allows for searching for data sources
that contain instances of a specific RDF type or
instances that are connected via specific properties
with other RDF types to find relevant data sources for
given queries. Such a pre-processed schema-level in-
dex supports identifying the relevant data sources in
the LOD cloud. It operates as service provider to find
data sources as shown in Figure 1(b).

In this paper, we introduce such an enhanced in-
dex structure called SchemEX that leverages RDF
typings and links for creating a graph-based web-
scale schema-index. SchemEX uses a fixed-window
approach for schema extraction and index building
while operating on a stream of RDF triples. This
allows for indexing without persistently storing the
data and an effective integration with a Linked Data
crawler such as LDSpider [5]. A crawl of 11 million
triples has been executed with LDSpider has been
used for a detailed qualitative evaluation regarding
precision and recall in locating relevant data sources
when using our index. Additionally, the full Billion
Triple Challenge (BTC) 2011 dataset with 2,170 mil-
lion triples has been processed to demonstrate the
scalability of SchemEX and the capability to handle
web-scale data in web-quality, i.e. to handle a very
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large dataset of varying quality and different origin.
To the best of our knowledge such a stream-based
schema extraction is novel in the LOD context.

2. Related Work

Different approaches for indexing Linked Open
Data have been developed in the past. Most of
them can be divided into instance-level indices and
schema-level indices. Instance-level indices contain
knowledge about individual resources. This can be
used to process and support queries which contain
graph patterns with specific resources, e.g., query-
ing all friends of Tim Berners-Lee. An example
of an instance-level index is the QTree structure [6]
that identifies relevant data sources for a given query
that incorporates instance-level information. This is
done by adding triples to corresponding buckets in
the QTree. Queries are answered by finding rele-
vant buckets for each query triple pattern and de-
tecting overlaps between them. As SchemEX is a
schema-level index, we concentrate in the following
on schema-level indices.

2.1. Schema Extraction and Schema-level Indices
Because instance-level indices contain knowl-

edge about each individual instance, the size of the
index grows with the size of the dataset. On the
other hand, schema-level indices describe the struc-
ture of a dataset. Depending on the heterogeneity
of the entities within a dataset, the corresponding
schema is concise and reduced in size to a small
fraction of the dataset. Because a schema does not
contain instance-level knowledge, it cannot be used
for answering such queries. But schemata can sup-
port queries by matching the query structure with
sub-graph structures in the indexed dataset. Aggre-
gated with lightweight ontologies like RDF-Schema,
a schema can support the processing of queries like
the Politician∧Actor query given in Listing 1. Such
a schema can be provided as lookup service compa-
rable to yellow pages.

Several approaches and algorithms have been
developed for extracting schema information from
graph data. Most approaches determine which data
entities have an equivalent structure and assign these
to a corresponding node in the schema graph. Links

between the schema nodes are established if there is a
link between at least one of their entities in the source
graph. The approaches differ in the methodology
and technical implementation of how the structural
equivalence of entities is defined.

One example of such a schema is DataGuide, a
concise and accurate summary describing the struc-
ture of a labeled and directed graph with a selected
root node [7, 8]. Entities are considered equivalent,
if they can be reached from the root node via the
same label paths. For each label path in the source
graph a corresponding path in the schema graph is
created. Every unique label path is described once
in the DataGuide, regardless of the occurrence in the
source graph. Computing a DataGuide is equivalent
to conversion of a non-deterministic finite automaton
into a deterministic finite automaton. In worst case,
it requires an exponential time complexity in depen-
dency of the number of nodes and edges in the source
graph.

An approach similar to DataGuide has been de-
veloped by Nestorov et al. [9]. Their algorithm
uses greatest fixpoint semantics and is equivalent to
a bottom-up clustering. Each entity is assigned to
its individual and perfectly matching node in the
schema. A distance function is used to count the
structural differences between entities by looking at
their outgoing edges and the types of the connected
entities. If the distance function returns 0, the two
compared entities are equivalent. Values > 0 state
that entities are not equivalent, but can be considered
similar at small distance values. Using this distance
function, equivalent entities are merged to a common
node in the schema. Relaxing the stringency when
comparing nodes can be reached by setting up a dis-
tance function threshold > 0. This leads to an ap-
proximative schema in such a way that similar and
slightly differing entities are grouped to the same
schema node. The outcome is a schema with a sig-
nificantly reduced number of nodes in comparison to
a perfectly matching schema.

Another approach is to use bisimulation for
schema extraction of graphs or XML data [10].
Bisimulation defines an equivalence relation on
graph nodes based on their neighbourhood. Two
nodes are considered equivalent and thereby as-
signed to the same equivalence class, if their sets
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of outgoing edges possess equal edge labels (some
bisimulation approaches consider incoming edges as
well) and point to instances which are equivalent
themselves. This recursive definition describes a
complete bisimulation. In such a bisimulation, the
complete graph is considered as the neighbourhood
of a selected node. Milo and Suciu base their 1-
index [11] on a complete bisimulation. In contrast,
the n-bisimulation only considers the neighbourhood
within a restricted path length of < n. For example,
the n-bisimulation is used by the a(k)- and D(k)-
indices [12, 13].

2.2. Schema Extraction on LOD
In the context of Linked Open Data and Semantic

Web, different approaches for schema extraction and
building indices have been developed.

A voiD description can be considered as a
schema – depending on the level of detail of the de-
scription – and used for index purposes. An approach
for creating voiD descriptions [14] from web-scale
datasets uses the Map-Reduce paradigm. In the first
step, voiD datasets within the super-dataset are iden-
tified. Each voiD dataset represents RDF resources
with corresponding properties. This could be, e.g.
RDF resources of a certain RDF class or resources
using the same set of properties or vocabularies. In
a second Map-Reduce step links between the identi-
fied voiD datasets are determined. The created voiD
descriptions can be used for supporting distributed
queries.

ExpLOD is an approach for creating RDF us-
age summaries of RDF graphs [15]. The created
summaries contain meta-data about the structure of
a RDF graph. This includes, e.g., the sets of in-
stantiated RDF classes of a resource or the sets of
used properties. This structure information is aggre-
gated with statistics like the number of instances per
class or the number of property usage. The ExpLOD
summaries are extracted by partition refinement al-
gorithms or alternatively via SPARQL queries. This
procedure implies to have random access to the full
dataset in order to compute the index.

The n-bisimulation (see Section 2.2) was applied
on Linked Open Data by Tran et al. [16]. They
used a parameterized L1-forward-L2-backward n-
bisimulation, where L1 and L2 are subsets of the

set of edge labels L. Only subsets of incoming and
outgoing edges with certain labels are taken into ac-
count. The equivalence classes induced by this re-
lation provide the elements of the index structure
which are mapped to individual instances. In this
setting, bisimulation does not regard RDF typings
that usually exist and are available in LOD. The eval-
uation has shown that the 1-bisimulation provides
the best trade-off between index size and response
time [17]. The used algorithm takes a time complex-
ity of O(|L1 ∪ L2||E|log(|V |)), where E and V de-
note the sets of edges and vertices.

3. SchemEX Index

SchemEX defines a schema index structure con-
sisting of three layers that contain different schema
concepts. Each layer supports and enables different
types of queries. In Sections 3.1 to 3.3, we intro-
duce the index structure of SchemEX and define it
formally. In Section 3.4, we compare the SchemEX
index with the related work.

An example of the enhanced index structure un-
derlying SchemEX is shown in Figure 2. The in-
dex consists of three schema layers that reference the
data source layer. The entries in the schema layer
capture different types of schema information tar-
geted at different types of queries. The schema in-
formation encoded into the entries is defined by class
and link patterns observed in the RDF instances. The
index then maps the elements from the layers to
the data sources that actually provide the RDF data
matching these patterns.

The source graph, i.e., the LOD cloud, is defined
as a set of triples T ⊆ VRB × P × (VRB ∪ L), where
VRB = (R ∪ B) denotes the set of resources R and
blank nodes B, P the set of RDF properties and L the
set of literals. The source function s : T → P(D)
defines the mapping of a triple t ∈ T to the set of
data sources D that include it.

3.1. RDF Class Layer
The first layer of RDF classes captures schema

information defined by the set VC = {C |
〈i, rdf:type, C〉 ∈ T ∧ i ∈ VRB} ⊆ R of individ-
ual RDF classes (e.g. foaf:Person) found in the
dataset, indicated by C1, C2, C3, and Ck in Figure 2.
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Figure 2: Enhanced index structure with two additional layers leveraging RDF typings

This layer allows for supporting queries that select
instances of a specified, single RDF class. Formally,
we can map the elements Cj in this layer to data
sources containing instances of those classes. To
do so, we first define the set SCj = {i ∈ VRB |
∃〈i, rdf:type, Cj〉 ∈ T} of all instances which be-
long to class Cj . Then we map Cj to all the data
sources containing relevant triples having i ∈ SCj

as subject by Cj 7→
⋃

i∈SCj
s(〈i, p, o〉). This layer

allows for retrieving all data sources that contain re-
sources which are instances of a specific RDF class,
e.g. instance of the class Politician or instance of the
class Actor.

3.2. RDF Type Cluster Layer
The second layer describes type clusters. Each

type cluster TC is an element in the power setP(VC)
over the RDF classes in layer 1. To be more effi-
cient, we use only those type clusters in the index
that are actually observed in the data. The type clus-
ters are mapped to those data sources providing in-
stances that belong to an exact set of RDF classes
such as TC1, TC2 and TCm denoted in Figure 2. A
type cluster can be interpreted as a multi-inherited
RDF class.

The type cluster of an instance i is defined by
Γ(i) := {C | 〈i, rdf:type, C〉 ∈ T}. Formally, the
type clusters are mapped to data sources as defined

by TC 7→
⋃

i:Γ(i)≡TC s(〈i, p, o〉). For example, the
type cluster layer provides the possibility to select
data sources of RDF resources that are instances of
the classes Politician and Actor at the same time.

3.3. Equivalence Class Layer
The third layer corresponds to equivalence

classes as defined in bisimulation. Here, the type
clusters are additionally partitioned into equivalence
classes defined by outgoing RDF links and the type
cluster of the target instances. Literals are derived
and mapped to corresponding XML schema data
types in the schema. These equivalence classes al-
low to query over RDF properties with and with-
out constraints on the RDF classes of subject and
object. Formally, we define an equivalence rela-
tion ∼ on the instances. Two instances i1 and i2
are equivalent (i1 ∼ i2), if and only if for every
triple 〈i1, p, o1〉 a triple 〈i2, p, o2〉 exists (and vice
versa), where p 6= rdf:type, Γ(i1) ≡ Γ(i2) and
Γ(o1) ≡ Γ(o2)3. The equivalence classes defined
by ∼ define the structures in layer 3 and a particular
equivalence class [i]∼ is then mapped to data sources
by [i]∼ 7→

⋃
j∈[i]∼

s(〈j, p, o〉).

3It can easily be verified that this relation satisfies reflexiv-
ity, symmetry and transitivity.
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Thus, as depicted in Figure 2, RDF properties be-
tween instances in the data graph are represented in
the schema as associations from the corresponding
equivalence classes to type clusters such as property
p1 that links EQC1 and TC2 and p2 that links EQC2

and TCm.
The equivalence class layer supports queries

without rdf:type constraints only by the structure
of the used properties. In use of all three layers and
the linkage between them, the index can, e.g., deter-
mine all data sources that contain data about people
that are Politician and Actor at the same time and
married with a Model.

3.4. Summary
While our index structure is based on equivalence

classes induced by bisimulation, it extends previous
approaches under several aspects. On one hand, our
index structure adds two further schema layers to
leverage RDF typings and incorporate lightweight
ontologies. On the other hand, we use these addi-
tional layers to adapt the bisimulation itself to ef-
fectively incorporate RDF type information into the
equivalence classes. Thereby, the index is extended
to support a wider range of query types and im-
prove and refine the results of type-selecting queries
that use basic graph patterns with rdf:type pred-
icate. Lightweight ontologies like RDF-Schema
can be incorporated into the schema such as rdf:

subClassOf and rdf:subPropertyOf relations.
These can be used for inferencing and query refine-
ment when querying the index.

4. SchemEX Vocabulary

An extracted schema corresponding to the
SchemEX structure can be represented in different
output formats. Relational or graph databases, for in-
stance, are a suitable framework for representing the
index. In the context of LOD, it seems to be reason-
able to use LOD standards for modelling and stor-
ing the schema as well. Thus, SchemEX uses RDF
for representing and serializing the schema structure.
This allows to write the schema to a RDF file or di-
rectly to a triple store.

One of the principles of LOD is to reuse ex-
isting terms and vocabularies instead of inventing

1 SELECT ?ds WHERE {
2 ? t c vo id : c lass yago : AmericanFi lmActors .
3 ? t c vo id : c lass dbpedia−owl : P o l i t i c i a n .
4 ? t c vo id : subset ?eqc .
5 ?eqc vo id : dataDump ?ds .
6 ? l i n k vo id : sub jec tsTarge t ?eqc .
7 ? l i n k vo id : p roper ty dbpprop : spouse .
8 ? l i n k vo id : ob jec tsTarge t ? tc2 .
9 ? tc2 vo id : c lass fbase : Model ( person ) .

10 }

Listing 2: SchemEX example query

new ones [1]. Because of this, we use the voiD
vocabulary for modelling the schema [2]. An ex-
ample of a SchemEX structure modelled with voiD
is shown in Figure 3. Each type cluster is defined
as a voiD dataset that represents all correspond-
ing RDF resources. The void:class predicate
is used to assign the RDF classes to a type clus-
ter. The equivalence classes are modelled as voiD
dataset and subset of a type cluster dataset. Relevant
data sources are attached via void:dataDump links.
voiD linksets are used to represent properties in this
model. For each property a linkset node is created
and the property itself attached via void:property
, such as p1 in Figure 3. void:subjectsTarget

and void:objectsTarget are used to link equiv-
alence classes and type clusters via the linkset.

Listing 2 shows the SPARQL query that can be
applied on an index represented in the SchemEX
vocabulary to determine relevant sources for the
query in Listing 1. The query returns all data
sources ds where one finds instances that are of type
yago:AmericanFilmActors and dbpedia-owl:
Politician and which have a dbpprop:spouse

that is fbase:Model_(person).

5. Stream-based Computation of SchemEX In-
dex from LOD

In theory, the presented index can be built pro-
vided free access to the complete RDF graph that
is indexed. This involves the need to lookup the
RDF type information for each instance as well as
for each of its referenced instances. Therefore, we
have developed a scalable stream-based approach for
schema extraction for the SchemEX index shown
in Figure 4. The stream-based processing allows
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Figure 3: SchemEX example modelled with voiD vocabulary

Figure 4: SchemEX: architecture of stream-based processing

for supplying the schema extractor directly with a
quadruple stream (RDF triple + context/provenance
URI) from a LOD crawler. To reach web-scale per-
formance and a moderate memory consumption only
a window of the stream with a certain width is ob-
served and buffered by the schema extractor. This
approach leverages the characteristic that a crawler
traverses the graph from resource to resource via
RDF properties so that linked instances are following
in a certain distance within the stream. The buffer
is implemented as a FIFO-cache (first in, first out)
of RDF instances with a fixed size. Each incom-
ing quadruple is parsed and assigned to the subject
instance in the cache via its subject URI. If the in-
stance does not exist in the cache yet, an instance ob-

ject is created and appended to the FIFO-cache. The
data structure used for the FIFO-cache is a ring queue
and a hash map that is referenced by the ring queue.
Adding a new and removing the oldest instance re-
sults in a time complexity of O(1), because of the
pointers on the first and last elements. All hash map
operations – including random access via instance
URI – result in a complexity of O(1) as well. Due
to this, all cache operations can be done in constant
runtime complexity of O(1). If the cache is full, the
oldest instance is removed, its schema information
with respect to the three layers is derived and incor-
porated in the index.

Determining type clusters and equivalence
classes is done by calculating an additional hash
value. This is implemented by sorting the collected
RDF classes and properties of each processed in-
stance. The used data structures are red-black trees
with time complexity of O(c · log(c)) (c = num-
ber of RDF classes) respectively O(p · log(p)) (p =
number of properties). Hence, the hash calculation
depends on the number of triples per instance and
can be considered constant on average. Due to this
stream-based approach, SchemEX has by design a
linear runtime complexity with respect to the num-
ber of analysed triples.

The restriction to a certain window size of the
data stream typically leads to incomplete results.

7



This happens, if information about a single RDF in-
stance is distributed over more triples in the stream
sequence than the cache can hold. In this case, the
instance has already been removed from the cache
when we retrieve additional information potentially
relevant for the schema. This occurs in particular
when assigning an instance to an equivalence class
as this assignment involves knowledge about the type
clusters of all linked resources. Hence, the essential
parameter for this approach is to choose an appro-
priate cache size value to obtain a certain degree of
quality for the extracted schema.

6. Evaluation of SchemEX

We considered two datasets for different evalua-
tion purposes. The TimBL dataset with 11 million
triples is introduced and used in Section 6.1 to deter-
mine the completeness of the index constructed by
stream-based means vs. a full index constructed with
all data available in memory. The full BTC dataset4

with 2.2 billion triples is used in Section 6.2 to show
the applicability of the SchemEX approach on web-
scale data. Both datasets have been generated using
the same LOD crawler LDSpider [5].

6.1. Qualitative Evaluation of SchemEX on the
TimBL Dataset

There are different query types that can be an-
swered by the SchemEX index and that target the
different schema layers introduced in Sections 3.1 to
3.3. These query types are of different complexity
and are affected to a different degree by incomplete
schema information as a consequence of the stream-
based processing.

The simplest type of query retrieves all data
sources providing instances of a certain type, there-
fore we refer to them as RDF-Class queries. Such
queries can be answered by the RDF class layer (Sec-
tion 3.1).

Slightly more information is needed to obtain
those data sources providing instances which belong
to a certain type cluster (TC queries, Section 3.2).
An extension of these TC queries target a set of RDF

4Available from http://challenge.
semanticweb.org

classes by considering all type clusters and super-
type clusters that contain the RDF classes (TC+S-
TC, Sections 3.1 and 3.2). A super-type cluster is
a type cluster composed of RDF classes of which a
subset equate to another existing type cluster5.

The next type of query makes use of the third
schema layer (Section 3.3) and addresses equiva-
lence classes. Equivalence classes can be selected
just by RDF properties (EQC) or in combination
with type-selection constraints (EQC+TC). The lat-
ter query type is the most complex type and targets
all schema layers.

To evaluate the index quality, we have con-
structed a gold standard on the TimBL dataset. This
dataset was crawled with LDSpider starting at Tim
Berner-Lee’s FOAF file and aborted at a size of 11
million triples. Thus, the TimBL dataset has been
created in the same fashion as the BTC data and thus
can be assumed to have similar characteristics.

We described in Section 5, that our schema can
be computed lossless for small datasets by using
random access to the entire dataset and looking up
the complete characteristics of all entities6. Such a
lossless schema provides the gold standard to com-
pare with the schema extracted by the SchemEX tool
using the stream based approach. The gold stan-
dard also provides all combinations of RDF classes,
type clusters and equivalence classes present in the
dataset. We compare all of these combinations
in the gold standard with the schema extracted by
SchemEX. Thereby, we can evaluate precision and
recall over the relevant data sources for virtually all
possible queries on the dataset.

The precision value for an individual query q is
calculated by Precision(q) =

|Dgold(q)∩Deval(q)|
|Deval(q)| , where

Dgold denotes the set of returned data sources of the
reference schema and Deval denotes the returned data
sources of the schema extracted by SchemEX. Recall
is calculated likewise by Recall(q) =

|Dgold(q)∩Deval(q)|
|Dgold(q)| .

The aggregated precision value for, e.g., all RDF-
classes is calculated by PrecisionRDF-Classes =

1
|VC |

∑
∀c∈VC

Precision(query-class(c)). Precision

5TCs with a subset of classes put less constraints on in-
stances thus forming a larger set of instances.

6For larger datasets, e.g. the full BTC dataset, it becomes
infeasible to compute the gold standard.

8

http://challenge.semanticweb.org
http://challenge.semanticweb.org


100 1K 10K 50K 100K Gold/700k

Runtime 182 s 223 s 192 s 194 s 203 s 376 s
Standard deviation 2.57 s 2.83 s 1.52 s 2.42 s 2.01 s 4.39 s
#triples/sec. 60.4k 49.3k 57.3k 56.7k 54.2k 29.3k
Max. memory consumption 84 MB 136 MB 315 MB 731 MB 874 MB 3393 MB

#type cluster 2772 2751 2749 2757 2761 2763
#equivalence classes 13570 12885 12281 12062 12184 11955
#triples voiD representation of index 270871 241187 246396 255751 263916 277695

Table 1: Schema extraction processes and results in dependency of window size (average of 10 runs)

and recall values for other types of index queries are
calculated analogously.

The lossy computation of SchemEX will affect
both precision and recall, because a missing informa-
tion fragment leads to a wrong type cluster or equiv-
alence class classification. For example, if SchemEX
misses the 〈i, rdf:type,Politician〉 triple of a resource
i that is instance of Politician and Actor, then i is
classified wrongly to the type cluster Actor. If the
triple 〈i, rdf:type,Actor〉 follows later on, it is as-
signed to the type cluster Politician as well. The type
clusters Actor and Politician have erroneous entries,
while Actor ∧ Politician misses a resource.

The gold standard on the TimBL dataset provides
a total of about 674K instances in the data graph,
which are mapped to 2,763 type clusters and about
12K equivalence classes. Type clusters are parti-
tioned by an average of 4.33 and up to a maximum
of 1,071 equivalence classes of common types like
foaf:Person.

This evaluation of the quality of SchemEX is per-
formed with respect to both the different query types
and variable cache sizes. We have run the SchemEX
approach with window sizes from 100 up to 100,000
instances and compared the generated index to the
gold standard. Table 1 shows the statistics and values
of the schema extraction process and the generated
schemata. For each cache size, we computed ten runs
in randomized order. In addition to the SchemEX
index the numbers of the gold standard schema are
shown.

As expected, the window size does not have a
strong influence on the runtime performance. Re-
garding the maximum memory consumption, an in-
creased window size by a factor of 10 results only

in a 2 to 3 times higher memory consumption. This
can be explained by observing more triples within a
larger window size but these triples belong to rela-
tively fewer new RDF classes.

The second part of the table shows values regard-
ing the extracted schemata. With a higher window
size, the values tend to converge towards the gold
standard. As this is merely a quantitative analysis,
the numbers do not guarantee that the counted type
clusters and equivalence classes are exactly the same.
This question is covered by the qualitative analysis
based on precision and recall.

Figure 5 shows precision and recall regarding the
five query types introduced above. For each query
type the values for different window sizes are shown.
For the simpler type selecting queries (RDF-Class,
TC and TC+S-TC) both precision (>98%) and re-
call (>91%) show very good results at any window
size. On the more complex EQC and EQC+TC type
queries precision and recall are lower. However, with
an increasing window size also precision and recall
can be boosted to more than 70% for a window size
of 100K instances. Based on this evaluation, we
chose a window size of 50K instances for process-
ing the second dataset from the BTC.

Regarding the evaluation results, it has to be con-
sidered that even wrongly classified instances are
mostly assigned to very similar equivalence classes.
Those wrongly classified instances may be returned
correctly by EQC and EQC+TC queries as they do
not put constraints on all properties of an equivalence
class.
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Figure 5: Precision and recall for different query types in dependency on cache window size

6.2. BTC Dataset Schema Extraction
To show that SchemEX can handle web-scale

data of realistic web-quality, we have extracted a
schema from the Billion Triples Challenge 2011
dataset. We have processed the BTC data in two parts
as well as the entire dataset. For our experiments,
we have applied a cache size of 50K instances. Ta-
ble 2 shows the statistics of the schema extraction
process and the extracted schemata. Each chunk of
10M triples has been processed with an average of
about 250 seconds using a single Intel Xeon CPU
core with 2.93 GHz and 4 GB of RAM. This allows
to process 1 billion triples in <7 hours and the full
dataset in approximately 15 hours.

The processing time demonstrates that SchemEX
is suitable for real time processing. Using commod-
ity hardware, we have managed to realize a through-
put of about 40k triples per second which was mainly
limited by reading the BTC dataset from disk. Thus,
SchemEX can easily handle the stream generated by
a LOD crawler (we have observed LDSpider provid-
ing about 2k triples per second). Further, our stream-
based approach has demonstrated to be able to han-
dle web-scale data and can in principle be extended
to an arbitrary amount of data.

Having such a schema for a very large dataset
crawled from the web allows us to provide a look-
up service for linked data clients to find relevant data
sources on the web of data.

7. Conclusion

We have presented an approximating and ef-
ficient index structure for supporting distributed
queries on Linked Open Data (LOD). Our SchemEX
approach for schema extraction provides a good
trade-off between scalability and result quality. Its
stream-based processing allows for easily integrating
with a LOD crawler. Future work will target on eval-
uating and optimizing crawling strategies for gain-
ing even better results. This entails the evaluation
of other cache strategies for optimization purposes.
In addition, we need to investigate and implement
options for maintaining, updating, and incrementally
building a SchemEX index. While from a conceptual
point of view these extensions should not be difficult
to realize, we have not yet evaluated their potential
impact on the index quality. As the developed in-
dex structure cannot deal with instance level queries,
extending it in this direction would be of interest. Fi-
nally, SchemEX can be integrated with a federated
query processing system and direct subqueries to rel-
evant distributed data sources.

The schema extracted from the full BTC
data is available on the web at http://west.
uni-koblenz.de/schemex/.
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1st billion 2nd billion full dataset

#triples 1 billion 1 billion 2.17 billion
#instances 187.7M 222.6M 450.0M
#data sources 13.5M 9.5M 24.1M
#type clusters 208.5k 248.5k 448.6k
#equivalence classes 0.97M 1.14M 2.12M

#triples voiD representation of index 29.1M 24.8M 54.7M
Compression ratio 2.91% 2.48% 2.52%

runtime (hh:mm) 6:51 6:05 15:16
average runtime per 10M chunk 247 s 219 s 252 s
standard deviation 80 s 12 s 57 s
#triples/sec. 40.5k 45.6k 39.5k

Table 2: Characteristics of the BTC 2011 dataset (cache size = 50K instances)
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