
strukt—A Pattern System for Integrating
Individual and Organizational Knowledge Work

Ansgar Scherp, Daniel Eißing, and Steffen Staab

University of Koblenz-Landau, Germany
{scherp, eissing, staab@uni-koblenz.de}

Abstract. Expert-driven business process management is an established
means for improving efficiency of organizational knowledge work. Implicit
procedural knowledge in the organization is made explicit by defining
processes. This approach is not applicable to individual knowledge work
due to its high complexity and variability. However, without explicitly
described processes there is no analysis and efficient communication of
best practices of individual knowledge work within the organization. In
addition, the activities of the individual knowledge work cannot be syn-
chronized with the activities in the organizational knowledge work.
Solution to this problem is the semantic integration of individual knowl-
edge work and organizational knowledge work by means of the pattern-
based core ontology strukt. The ontology allows for defining and man-
aging the dynamic tasks of individual knowledge work in a formal way
and to synchronize them with organizational business processes. Using
the strukt ontology, we have implemented a prototype application for
knowledge workers and have evaluated it at the use case of an architec-
tural office conducting construction projects.

1 Introduction

There is an increasing interest in investigating means for improving quality and
efficiency of knowledge work [6]. An established means for improving efficiency of
organizational knowledge work is expert-driven business process management [1].
The implicit procedural knowledge found within the organization is made explicit
by defining and orchestrating corresponding business processes (cf. [15]). By this,
procedural knowledge of the organization is explicitly captured and made acces-
sible for analysis, planning, and optimization. Important supplement to organi-
zational knowledge work is individual knowledge work. It is present in domains
in which acquiring and applying new knowledge plays a central role such as re-
search, finance, and design [14]. Due to its complexity and variability, individual
knowledge work is typically not amenable to planning. In addition, activities
of individual knowledge work that occur only rarely do not justify the effort of
business process modeling. Nevertheless, it seems to be worthwhile to consider
individual knowledge work from the perspective of business process optimization.
Even if the activities of individual knowledge work are not entirely accessible to
planning, they are often embedded in organizational business processes defining,



e.g., some constraints on the activities, deadlines, communication partners, and
others [20]. Individual knowledge work often contains some sub-activities that
actually provide a fixed structure and thus can be explicitly planned, e.g., to
obtain approval for some activities in a large construction project [20]. These
activities of individual knowledge work need to be synchronized with the orga-
nizational knowledge work. However, today’s models for business processes and
weakly structured workflows do not allow for representing such an integration
of the activities.

Solution to this problem is the semantic integration of individual knowledge
work and organizational knowledge work based on the pattern-based core ontol-
ogy strukt1. The strukt ontology allows for modeling weakly structured workflows
of individual knowledge work in a formal and precise way. It allows for decom-
posing the tasks of the individual knowledge work into sub-tasks, which again
can be structured along a specific order of execution and dependencies between
the tasks. The tasks can be semantically connected with any kinds of documents,
information, and tools of a particular domain. In addition, the strukt ontology
provides for modeling structured workflows of organizational knowledge work
and combing the weakly structured workflows with the structured ones. The on-
tology is used in the strukt application that allows knowledge workers to collab-
oratively create, modify, and execute the dynamic tasks of individual knowledge
work and to synchronize them with organizational business processes.

The need for integrating individual and organizational knowledge work is mo-
tivated by a scenario of an architectural office in Section 2. Based on the scenario,
the requirements on the strukt ontology are derived in Section 3. In Section 4,
existing models and languages for business process modeling and weakly struc-
tured workflows are compared to the requirements. The pattern-based design of
the core ontology strukt is described in Section 5. An example application of the
ontology design patterns defined in strukt is provided in Section 6. The strukt
application for collaboratively executing tasks of individual knowledge work and
synchronizing it with business processes is presented in Section 7, before we
conclude the paper.

2 Scenario

The scenario is based on a real architectural office. The work in the architec-
tural office is highly knowledge oriented as the acquisition and application of
knowledge plays a crucial role in planning and conducting construction projects.
One finds some organizational business processes in the architectural office that
are repeated with each project. Figure 1 depicts an excerpt of typical steps in
the process of planing an apartment construction in Business Process Modeling
Notation (BPMN) [17]. Subsequent to the activity Initiate construction project
(a) are the activities Prepare building application (b) and File building applica-
tion (c). The activities are strictly separated from each other and executed in

1 strukt comes from the German word Struktur and means structure in English.



a determined, sequential order. The resource (d) defines the input and output
documents of an activity. In the case of the activity Prepare building applica-
tion these documents are, e.g., the building application form and all required
attachments. The activity Prepare building application is associated with the role
Construction draftsman (e), whereas the other activities are conducted by roles
like Construction manager, Structural engineer, or Planner. Branches are used to
represent parallel activities (f) and conditions (g). Besides the processes within
the company also the communication with external project partners is explicitly
captured (h).

C
us

to
m

er

Ex
te

rn
al

 s
tru

ct
ur

al
 e

ng
in

ee
r

PlannerStructural engineerConstruction draftsmanConstruction manager

Initiate 
construction 

project

Compile 
structural 
analysis

Request 
external review 

of structural 
analysis

Draw 
construction

File 
construction 

tenders 

Prepare 
building 

application
File building 
application

C
on

st
ru

ct
or

s

(b)

building application 
form

contract, permit, 
project draft

Schedule 
construction

*.project

(d)

(a)

(e)

(h)

(c)

Sign 
contract

external review?

(f)

(g)

Fig. 1: Example Business Process of the Architectural Office

The organizational knowledge work is already well described on the level of
business processes. However, the core area of the architectural office’s activities
is insufficiently captured. For example, activities such as Prepare building appli-
cation or Draw construction consist of a large number of sub-activities and are
usually collaboratively executed by multiple persons. These activities of individ-
ual knowledge work are characterized by high complexity and variability when
executing the tasks. As an example, we consider the business process Prepare
building application of Figure 1 in more detail: For preparing a building applica-
tion one has to fill a corresponding application form. This form requires some
attachments such as ground plan, site plan, and others that are used to prepare
the administrative permit for the construction project. Depending on the type
of building construction, however, different attachments are needed. In addition,
the construction projects may have specific requirements to be considered like



terrestrial heat, timber construction, accessibility, and others. In some cases a
complete structural engineering calculation has to be conducted at application
time whereas this is not required in other cases.

3 Requirements to strukt Ontology

We have derived the requirements to the strukt ontology from the scenario in
Section 2 as well as from related work in information systems research such
as [12, 11, 20, 15]. We briefly discuss each requirement and provide a reference
number REQ-<number>.

Weakly Structured Workflows (REQ-1): Individual knowledge work is
characterized by a high complexity and variability [12]. Resources and activities
for conducting tasks are often not known a priori (see Section 2). A support for
representing weakly structured workflows is needed that can be adapted during
execution time without violating the consistency of other running processes.

Support for Structured Workflows (REQ-2): Despite the high flexibil-
ity of indidivual knowledge work, there are also some organizational requirements
and framework directives that need to be strictly followed (see scenario in Sec-
tion 2). Thus, support is needed to represent structured workflows in the sense
of traditional business process management [11].

Integrating Weakly Structured and Structured Workflows (REQ-3):
Within an organization there is typically a need to represent both weakly struc-
tured workflows and structured workflows (see Section 2). Today’s models and
systems, however, lack in formally integrating weakly structured workflows and
structured workflows and thus cannot benefit from this integration. In order to
leverage the strength of both weakly structured and structured workflows, an
appropriate model must be able to formally integrate and synchronize them into
a common workflow.

Workflow Models and Instances (REQ-4): Distinguishing workflow
models and workflow instances is a common feature of traditional business pro-
cess models [20]. In individual knowledge work, however, such a distinction is
often not made as the individual knowledge work is high in complexity and vari-
ability. However, also from the execution of weakly structured workflows one
can learn some generic procedural knowledge. Thus, also for weakly structured
workflows the distinction between instance and model should be made. In ad-
dition, it shall be possible to modify a workflow instance without affecting its
workflow model or other workflow instances. In addition, it shall be possible to
derive workflow models from executed workflow instances.

Descriptive Workflow Information (REQ-5): Structured workflows and
weakly structured workflows are characterized by the resources involved. A core
ontology for integrating individual and organizational knowledge work should
therefore support describing the necessary information for the workflow exe-
cution, like resources used, processed, or created (which is a central aspect in
particular for individual knowledge work [15]), the tools applied, the status of
the workflow execution, as well as scheduling information (cf. Section 2).



4 Comparing Models for Knowledge Work

We analyze and evaluate existing models for structured workflows and weakly
structured workflows with respect to the requirements introduced in Section 3.
The traditional business process models like BPMN [17] and extended Event-
driven Process Chain (EPC) [18] are available as semantic models in form of
the sBPMN [13] and sEPC [13] ontologies. However, they still lack support for
representing weakly structured workflows and thus are less applicable to our
problem. Also OWL-S [22] shares these characteristics of traditional business
process models. Ad-hoc and weakly structured models like the Process Meta-
Model (PMM) [2] and the Task-Concept-Ontology (TCO) [19] do not require a
strictly determined process flow like the traditional business process models and
may be automatically extracted from natural language descriptions [10]. Such
models are suitable to represent individual knowledge work. However, the lack
of formal precision and missing integration with traditional business processes
hinder their reuse.

The DOLCE+DnS Plan Ontology (DDPO) [8] provides a rich axiomatiza-
tion and formal precision. It obtains its high level of formal precision from the
foundational ontology DOLCE [3] and specializes the ontology design pattern
Descriptions and Situations (DnS). The central concepts defined in the DDPO
are Plan, Goal, Task, and PlanExecution [8]. A Plan is a description of at least
one Task and one agentive role participating in the task. In addition, a Plan has
at least one Goal as a part. A Goal is a desire that shall be achieved. Tasks are
activities within plans. They are used to organize the order of courses. Finally,
PlanExecutions are actual executions of a plan, i.e., they are real-world situations
that satisfy a Plan. It is in principle possible to represent both traditional work-
flows as well as weakly structured workflows using the DDPO. However, DDPO
does not distinguish structured and weakly structured workflows (REQ-3 ) and
does not support descriptive workflow information (REQ-5 ). REQ-4 is present
in DDPO but not explicitly specified. Nevertheless, due to its high formality
and using the foundational ontology DUL as basis, the DDPO is well suited for
extensions and serves as basis for our work.

In conclusion, one can say that none of the existing models fulfill all require-
ments stated to strukt. Traditional business process models miss representing
weakly structured workflows of individual knowledge work. On contrary, weakly
structured workflows are in principle enabled to represent the activities of indi-
vidual knowledge work. However, they lack the formal precision required and do
not allow for an integration with traditional business process models. The DDPO
model differs from the other models insofar as it in principle allows for modeling
both organizational business processes and activities of individual knowledge
work. In addition, it enables integration with other systems due to its formal
nature. Thus, it is used as basis in our work and will be adapted and extended
towards the requirements stated in Section 3.



5 Pattern-based Core Ontology strukt

The foundational ontology DOLCE+DnS Ultralight (DUL) [3] serves as basis
for the core ontology strukt. Foundational ontologies like DUL provide a highly
axiomatized representation of the very basic and general concepts and relations
that make up the world [16]. As such, foundational ontologies are applicable to a
wide variety of different fields. Foundational ontologies like DUL follow a pattern-
oriented design. Ontology design patterns [9] are similar to design patterns in
software engineering [7]. Adapted from software engineering, an ontology design
pattern provides (i) a description of a specific, recurring modeling problem that
appears in a specific modeling context and (ii) presents a proven, generic solution
to it [4, 7]. The solution consists of a description of the required concepts, their
relationships and responsibilities, and the possible collaboration between these
concepts [4]. An ontology design pattern is independent of a concrete application
domain [7] and can be used in a variety of different application contexts.

In the following, we briefly introduce the patterns of DUL that are of par-
ticular interest in this work:2 The Descriptions and Situations Pattern provides
a formal specification of context [16]. The Description concept formalizes the
description of a context by using roles, parameters, and other concepts. The
Situation represents an observable excerpt of the real world that satisfies the
Description. By using the Descriptions and Situations Pattern, different views
onto the same entities can be formally described. The patterns of the core on-
tology strukt are based on the Descriptions and Situations Pattern. This means
that they reuse or specialize concepts or relations defined in the pattern. The
foundational ontology DOLCE+DnS Ultralight provides a specialization of the
DDPO [8] (see Section 4) for planning activities, called the Workflow Pattern.
Central entity of the Workflow Pattern is the Workflow concept that formalizes
the planning of processes. The Workflow concept is specialized from DDPO’s
Plan, which itself is derived from Description of the Descriptions and Situations
Pattern. The WorkflowExecution concept represents the concrete execution of a
workflow instance. It is derived from DDPO’s PlanExecution, which is a special-
ization of Situation. The Task Execution Pattern formalizes the processing of
tasks in activities. The Role Task Pattern enables association of roles to tasks.
The Part-of Pattern represents the (de-)composition of entities into wholes and
parts [21]. The Sequence Pattern describes the order of entities through the
relations precedes, follows, directlyPrecedes, and directlyFollows.

A core ontology refines a foundational ontology towards a particular field by
adding detailed concepts and relations [16]. However, core ontologies are still ap-
plicable in a large variety of different domains. The core ontology strukt reuses
and specializes different ontology design patterns that DUL offers. Central pat-
terns of the core ontology strukt are the Weakly Structured Workflow Pattern
(REQ-1 ), the Structured Workflow Pattern in combination with the Transition
Pattern (REQ-2 ), the Workflow Integration Pattern to integrate weakly struc-
tured workflows and structured workflows (REQ-3 ), and the Workflow Model

2 For a detailed description we refer to http://ontologydesignpatterns.org/



Pattern for differentiating workflow models and workflow instances (REQ-4 ).
Weakly structured workflows and structured workflows can be further described
by applying strukt’s Condition Pattern, Resource Pattern, Status Pattern, and
Scheduling Pattern (REQ-5 ). Each pattern of the core ontology strukt solves a
specific modeling problem that distinguishes it from the other patterns. However,
strukt is not just a collection of some otherwise independent ontology design pat-
terns. Rather, the set of ontology design patterns strukt defines relate to each
other and are designed to be applied together. Such a set of related patterns
is called a pattern system [4]. The core ontology strukt can be applied in vari-
ous domains that need to represent knowledge work and workflows, respectively.
Finally, strukt can be extended by domain ontologies such as an architectural
ontology or financial administration ontology. In the following, we describe the
patterns of the strukt ontology.

5.1 Weakly Structured Workflow Pattern

The Weakly Structured Workflow Pattern depicted in Figure 2 refines the generic
Workflow Pattern of DUL. The concept WeaklyStructuredWorkflow specializes
the Workflow concept of DUL’s Workflow Pattern. Using the defines relation,
different Roles and Tasks are defined. Roles abstract from the characteristics,
skills, or procedures relevant for the execution of a specific task and allows
for differentiating Agents and Objects participating in activities (see Role Task
Pattern of DUL). The classifies relation determines the Role of an Object in the
context of a specific workflow. The concept Agent is a specialization of the Object
concept and describes the entity acting such as a person. Objects and Agents are
defined as participants of an Action by using the hasParticipant relation. Tasks are
used to sequence activities [8]. They structure a workflow into different sub-tasks
relevant for the workflow execution and can be hierarchically ordered (see Task
Execution Pattern of DUL). Tasks are associated to Actions using the relation
isExecutedIn. Action is a specialization of DUL’s Event and describes the actual
processing of a task. Tasks can be ordered using the precedes relation. The order
of tasks may be underspecified, i.e., the actual sequence of processing may only be
determined on a short-term basis and day-to-day requirements when executing
the workflow. Thus, a strict order of processing the tasks is not enforced and the
order may even change during execution time.

In knowledge-intensive activities, it may not be possible to define a priori
all details of a complex task. Thus, the Weakly Structured Workflow Pattern
allows for defining additional (sub-)tasks during the execution of the workflow
using the hasPart relation. A Task is associated with a Role using the isTaskOf
relation (see Part-of Pattern of DUL). Also Actions can be decomposed using
the relation hasPart. Typically, the decomposition of an Action is bound with
the decomposition of the corresponding Task.

The goal that is to be reached by executing a workflow is represented using
the Goal concept and associated to WeaklyStructuredWorkflow using the hasCom-
ponent relation. It can be further decomposed into sub-goals using the hasPart



strukt:WeaklyStructuredWorkflow dul:defines

dul:Role

dul:Event 

strukt:WeaklyStructuredWorkflowExecution

dul:classifiesdul:satisfies

dul:EventType

dul:classifies

dul:Object

dul:hasSetting

dul:Goal dul:hasPart

dul:directlyFollows

dul:hasComponent

dul:WorkflowExecution

dul:Workflow

strukt:relatesTo

dul:hasParticipant

dul:Action

dul:Task
dul:directlyFollows

dul:hasPart

dul:hasPart

dul:isTaskOf 

dul:Agent

Fig. 2: Weakly Structured Workflow Pattern

relation. Goals are explicitly associated to corresponding sub-tasks using the re-
latesTo relation. The Goal concept is central to the weakly structured workflow
pattern and is used by the Workflow Integration Pattern described in Section 5.4
to link the Weakly Structured Workflow Pattern with the Structured Workflow
Pattern.

5.2 Structured Workflow Pattern and Transition Pattern

The Structured Workflow Pattern provides a formal specification of traditional
business processes (see Section 4). It is applied in combination with the Tran-
sition Pattern that defines the transitions between processes, i.e., the Events.
Thus, the Structured Workflow Pattern is an abstraction from the concepts of
traditional business process models.

Figure 3 depicts the Structured Workflow Pattern. It specifies the concepts
StructuredWorkflow and StructuredWorkflowExecution as specialization of DUL’s
Workflow and WorkflowExecution concepts. This eases the integration with the
Weakly Structured Workflow Pattern that specializes the same concepts and
thereby supports the integration of individual and organizational knowledge
work. The distinction between StructuredWorkflow and StructuredWorkflowExecu-
tion reflects the two phases of traditional business process management, namely
the definition phase and execution phase [23]. In the definition phase, existing
business processes are captured and orchestrated into a (semi-)formal business
process model. In the execution phase, the previously created process model is
implemented.

Using the defines relation, the StructuredWorkflow specifies the Roles, Tasks,
EventTypes, and TransitionTypes of the workflow as in the definition phase. Roles
determine the roles played by Objects such as Agents participating in processes
of the workflow. The roles are associated with some concrete Tasks using the
isTaskOf relation. The TransitionType is part of the Transition Pattern and al-
lows for formally defining the transition between two concepts, which classify



strukt:StructuredWorkflow dul:defines

dul:Role

dul:Event 

strukt:StructuredWorkflowExecution

dul:classifies

dul:satisfies

dul:EventType

dul:classifies

dul:Object

dul:hasSetting

dul:Goal

dul:hasPart

strukt:TransitionAction

strukt:TransitionType

dul:isExecutedIn

dul:directlyPrecedes

dul:directlyFollows

dul:hasComponent

dul:WorkflowExecution

dul:Workflow

strukt:relatesTo

dul:hasParticipant

dul:Action

dul:Task

dul:directlyPrecedes

dul:directlyFollows

dul:hasPart

dul:hasPart

dul:isTaskOf 

dul:Agent

Fig. 3: Structured Workflow Pattern

processes represented by DUL’s Event concept. The concepts TransitionAction,
Event, and Object constitute the entities of the workflow execution phase. Like
the WeaklyStructuredWorkflow concept, also the StructuredWorkflow concept de-
fines a Goal concept, which captures the goal of the workflow.

The transitions between business processes are defined using the Transition
Pattern. It provides the four basic transition types [18, 17, 5] sequence, condition,
fork, and join, defined as specializations of the generic Transition Pattern. The
Sequence Transition Pattern specifies a strict sequence of process execution as
depicted in Figure 4(a). The corresponding operator in BPMN is shown in Fig-
ure 4(b). The Sequence Transition Pattern defines a SequenceTransitionType as
specialization of the generic TransitionType. It determines a strict sequential or-
der of execution of two EventTypes. Thus, the SequenceTransitionAction connects
exactly two concrete business processes represented as Events. The Condition-
based Transition Pattern models process executions that are bound to some
process conditions. The Fork Transition Pattern is used to model fork/join tran-
sitions.

A

B

strukt:Sequence
TransitionType dul:EventType

dul:directlyPrecedes
exactly 1

dul:directlyFollows
exactly 1

dul:Event

dul:classifies

strukt:Sequence
TransitionAction

dul:isExecutedIn
dul:directlyPrecedes
exactly 1

dul:directlyFollows
exactly 1

(a) (b)

strukt:TransitionType

strukt:TransitionAction

Fig. 4: Sequence Transition Pattern



5.3 Condition Pattern, Resource Pattern, Status Pattern, and
Scheduling Pattern

The workflows specified using the Weakly Structured Workflow Pattern and
Structured Workflow Pattern can be further described with information about
the conditions, resources, status, and scheduling of activities. Information about
conditions for executing an activity are added by combining the Weakly Struc-
tured Workflow Pattern or Structured Workflow Pattern with the Condition
Pattern. The Condition Pattern allows for defining some preconditions and post-
conditions such as that a document needs to be signed. Using the Resource Pat-
tern, one can define if an activity produces a resource (create), uses a resource
(without exactly knowing if the resource is modified or not), views a resource
(without modifying it, i.e., read), edits a resource (update), consumes a resource
(delete), or locks a resource. The status of activities and processes can be set
to active, inactive, or finished using the Status Pattern. The pattern can be ex-
tended to domain specific requirements such as initiated, suspended, and failed.
Activities may have to be executed at a specific time and/or place. This can be
represented using the Scheduling Pattern.

5.4 Workflow Integration Pattern

The integration of individual knowledge work and organizational knowledge work
is conducted using the Workflow Integration Pattern specialized from DUL’s
Workflow Pattern and is depicted in Figure 5. The alignment of the concepts de-
fined in the Weakly Structured Workflow Pattern and the Structured Workflow
Pattern is supported by using the Workflow Pattern of DUL as common model-
ing basis. As described in Section 5.1 and Section 5.2, it is possible to associate
a Goal to each Task using the relatesTo relation. The Goal concept is connected
to the workflow via the hasComponent relation. Using the Goal concept, a formal
mapping of weakly structured workflows and structured workflows can be con-
ducted. It is based on the assumption that if some individual knowledge work
is carried out in the context of an organizational business process or vice versa,
they share a common Goal. Finally, the association between concrete activities
carried out in the individual knowledge work and organizational knowledge work
is established through the relatesTo relation that connects the Goals with Tasks in
the Weakly Structured Workflow Pattern and the Structured Workflow Pattern.

5.5 Workflow Model Pattern

The Workflow Model Pattern allows for explicitly distinguishing workflow mod-
els and workflow instances for both, weakly structured workflows and structured
workflows. To create a workflow model, the Workflow Model Pattern is able to
represent on a generic, i.e., conceptual level, the flow of Tasks, their dependen-
cies, and the resources required. In contrast to the traditional business process
modeling (see Section 4), however, the workflow instances created from a work-
flow model do not need to be strictly in accordance with the model. This is in



dul:Workflow

dul:Goal

dul:hasPart

dul:hasComponent strukt:relatesTo

dul:Taskdul:defines

strukt:StructuredWorkflow

strukt:WeaklyStructuredWorkflow

Fig. 5: Workflow Integration Pattern

particular important for weakly structured workflows that can be adapted to the
requirements of a concrete execution situation.

Figure 6 depicts the Workflow Model Pattern. It consists of two parts, one for
the WeaklyStructuredWorkflowModel and one for the StructuredWorkflowModel.
In the case of the StructuredWorkflowModel, subclasses of Role, Task, and Tran-
sitionType are defined as valid components of the workflow model definition. For
weakly structured workflow models, only Roles and Tasks can be defined.

strukt:
WeaklyStructured
WorkflowModel

(rdfs:subClassOf) dul:Task(rdfs:subClassOf) dul:Role

dul:defines

strukt:Structured
WorkflowModel

(rdfs:subClassOf) 
dul:Task

(rdfs:subClassOf) 
dul:Role

dul:defines

(rdfs:subClassOf) 
strukt:TransitionType

 dul:Workflow

 dul:Workflow

Fig. 6: Workflow Model Pattern

6 Example Application of the strukt Core Ontology

The application of the strukt core ontology is shown at the example of an apart-
ment construction by the architectural office introduced in Section 2. Figure 7
(bottom part) depicts the application of the Weakly Structured Workflow Pat-
tern wsw-prepare-building-application-1 for preparing a building application. It
defines the Tasks t-compute-statics-1 and t-create-groundplan-1. The relation isEx-
ecutedIn classifies the individuals a-compute-statics-1 and a-create-groundplan-1
as Actions, executing the tasks. The isTaskOf relation specifies that the task
t-compute-statics-1 has to be conducted by an agent playing the role of a Struc-
turalEngineer r-structural-engineer-1, here the NaturalPerson tmueller-1. The Nat-



sw-construction-
project-1:

StructuredWorkflow

swe-construction-
project-1:
Structured

WorkflowExecution

dul:satisfies

dul:hasParticipant

t-file-building-
application-1:

FileBuildingApplication

t-prepare-building-
application-1:

PrepareBuilding
Application

dul:directlyPrecedes

r-construcion-
draftsman-1:
Construction
Draftsman

dul:isTaskOf

tmueller-1:
NaturalPerson

dul:classifies

a-prepare-building-
application-1:Action

a-file-building-
application-1:Action

dul:isExecutedIn dul:isExecutedIn

dul:defines

dul:hasSetting

t-sequence-1:Sequence
TransitionType

a-sequence-1:Sequence
TransitionAction

dul:directlyPrecedes

dul:directly
Precedes dul:directlyPrecedes

dul:isExecutedIn

wsw-prepare-
building-

application-1:
WeaklyStructured

Workflow

wswe-prepare-
building-

application-1:
WeaklyStructured
WorkflowExecution

dul:satisfies

dul:hasParticipant

t-create-
groundplan-1:

CreateGroundplan

t-compute-
statics-1:

ComputeStatics

dul:precedes
r-structural-
engineer-1:
Structural
Engineer

dul:isTaskOf

tmueller-1:
NaturalPerson

dul:classifies

a-compute-
statics-1:
Action

a-create-
groundplan-1:

Action

dul:isExecutedIn dul:isExecutedIn

dul:defines

dul:hasSetting

dul:hasComponent g-prepare-building-application-1:Goal

strukt:relatesTo

Fig. 7: Example integration of weakly structured and structured workflow

uralPerson tmueller-1 is specified as participant of the Action a-compute-statics-1.
The participant of the Action a-create-groundplan-1 is not specified.

The weakly structured workflow belongs to the organizational business pro-
cess depicted in Figure 7 (top part) using the Structured Workflow Pattern. It
models an excerpt of the business process shown in Figure 1 of the scenario in Sec-
tion 2. The StructuredWorkflow sw-residential-object-1 defines the Tasks t-prepare-
building-application-1 and t-file-building-application-1, the SequenceTransitionType
tt-sequence-1, and the role r-draftsman-1. The tasks t-prepare-building-application-
1 and t-submit-application are connected in a sequence using the relations direct-
lyPrecedes and directlyFollows of t-sequence-1. The Role r-draftsman-1 is con-
nected using the isTaskOf relation with the Task t-prepare-building-application-1.
In the context of this workflow, the NaturalPerson tmueller-1 acts as r-draftsman-1.
The Actions a-prepare-building-application-1, a-sequence-1, and a-submit-applica-
tion-1 constitute the execution of the Tasks and SequenceTransitionType, respec-
tively. The integration of the weakly structured workflow wsw-prepare-building-
application-1 and structured workflow sw-construction-project-1 is conducted by
defining g-prepare-building-application-1 as Goal of the t-prepare-building-applica-



wswm-prepare-
building-application-1:
WeaklyStructured
WorkflowModel

CreateGroundplanComputeStaticsStructural
Engineer

dul:defines

dul:isTaskOf dul:precedes

Fig. 8: Application of the Workflow Model Pattern

tion-1 task. The Goal g-prepare-building-application-1 is then connected with the
Weakly Structured Workflow wsw-prepare-building-application-1 using the has-
Component relation. As described above, the wsw-prepare-building-application-1
captures the individual activities, concrete sub-tasks, and roles involved in ac-
tually writing the building application.

An instance of a workflow such as the example of the weakly structured
workflow wsw-prepare-building-application-1 in Figure 7 (bottom part) can be
abstracted to a workflow model using the Workflow Model Pattern. As shown
in Figure 8, the abstraction from a workflow instance to a model is basically
the upper part of the Descriptions and Situations Pattern of DUL. In our ex-
ample, the WeaklyStructuredWorkflowModel wswm-prepare-building-application-1
consists of the domain-specific concepts of the role StructuralEngineer, the two
tasks ComputeStatics and CreateGroundplan, and the relations.

As shown in Figure 7, using the patterns of struct allows for modeling and
integrating structured workflows and weakly structured workflows. Using the
ontology design pattern Descriptions and Situations as design principle for rep-
resenting workflows in strukt allows for modifying workflow instances without af-
fecting the original workflow model. This is achieved by contextualizing the work-
flow instances using the individuals sw-construction-project-1 and wsw-prepare-
building-application-1. Other instances of the same WeaklyStructuredWorkflow like
a wsw-prepare-building-application-2 can have different roles and tasks defined for
the actual execution and the tasks can be executed in different order.

7 Prototype Application

The prototype application supports individual and organizational knowledge
work and their combination. It instantiates the pattern of the strukt ontology.
A domain-specific construction ontology aligned to DUL is used to describe
the roles such as manager, draftsman, and engineer. The user interface for the
individual knowledge worker is depicted in Figure 9. It consists of a task space for
managing the weakly structured workflows with their tasks and sub-tasks. The
task space allows for receiving details of a task, create new tasks, modify tasks,
save a workflow instance as workflow model, instantiating a workflow model, and
deleting tasks and workflows, respectively.

The left hand side of the screenshot depicted in Figure 9 shows example
weakly structured workflows from the architecture scenario presented in Sec-
tion 2. The tasks and subtasks of a weakly structured workflow can be shown by



Fig. 9: Task Space for the Individual Knowledge Worker

clicking on the small triangle symbol next to the task like the Building applica-
tion Mornhinweg Inc example. Important details of a task are shown on the right
hand side of the screenshot such as deadlines, appointments, and others. Tasks
can be marked as finished by clicking on the checkbox on the left to the task
name. When there is a lock symbol in the checkbox (indicated as small box), the
task cannot be accomplished due to unfulfilled dependencies (indicated by the
arrows). For example, the task Calculate structural analysis cannot be processed
as the tasks Draw elevation plan and Draw ground plan are not completed. Op-
tional tasks are indicated with the keyword (opt). The order of tasks in a weakly
structured workflow can be changed by the knowledge worker using simple drag
and drop interaction. The right hand side of the screenshot in Figure 9 provides
details of a task such as its status and the responsible agent. Additional agents
can be added as well as the responsibility of tasks can be forwarded. Thus, the
strukt prototype enables a collaborative execution of a weakly structured work-
flow by multiple knowledge workers. Further details can be investigated using
the tab Tools showing the tools used to process a task and the tab Conditions
showing detailed information about the conditions associated with the task, e.g.,
when a specific role needs to sign a specific document.

In order to abstract a workflow model from a workflow instance, the strukt
application provides the workflow transformation menu depicted in Figure 10.
It allows for defining the components of the workflow model. To this end, all
components of the workflow instance to be transformed are depicted in a ta-
ble. Each row of the table represents a task of the weakly structured workflow.
Subtasks are indicated by indentions. The columns Task, Conditions, Optional,
Role conditions, Documents, and Tools show the details of the tasks relevant
for creating a workflow model. Tasks can be removed from the workflow at this
point from the transformation process. In addition, the order of tasks can be
changed by drag and drop interaction and new tasks can be added.



Fig. 10: Transformation Menu for Creating a Workflow Model from an Instance

We have implemented a simple workflow management system in our strukt
prototype. It provides a test environment for synchronizing the activities in
the weakly structured workflows and some pre-defined business processes of the
architectural office. A user interface is not provided as it is assumed that strukt
is integrated in an existing business process engine with its own interface.

8 Conclusions

We have presented an approach for integrating individual knowledge work and
organizational knowledge work by means of the pattern-based core ontology
strukt. The core ontology strukt defines several ontology design patterns for cap-
turing weakly structured workflows of individual knowledge work and structured
workflows in the context of organizational knowledge work. A formal alignment
and synchronization of the activities in individual knowledge work and orga-
nizational knowledge work is conducted by basing on the DOLCE+DnS Plan
Ontology [8]. Concrete instances of weakly structured workflows can be trans-
formed into generic workflow models, enabling reuse of procedural knowledge.
On basis of the strukt ontology, we have developed a prototypical software sys-
tem for the collaborative planning and execution of weakly structured workflows
and applied it to the use case of an architectural office. The strukt prototype
connects with a simple workflow management system to synchronize the flexible,
individual knowledge work with the strict execution of business processes. This
work has been co-funded by the EU in FP7 in the ROBUST project (257859).



References

1. J. Becker, B. Weiss, and A. Winkelman. Developing a Business Process Modeling
Language for the Banking Sector - A Design Science Approach. In Americas
Conference on Information Systems, pages 1–12, 2009.

2. J. Bolinger, G. Horvath, J. Ramanathan, and R. Ramnath. Collaborative workflow
assistant for organizational effectiveness. In Applied Computing. ACM, 2009.

3. S. Borgo and C. Masolo. Handbook on Ontologies, chapter Foundational choices in
DOLCE. Springer, 2nd edition, 2009.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, 1996.

5. S. Carlsen. Action port model: A mixed paradigm conceptual workflow modeling
language. In Cooperative Information Systems, pages 300–309. IEEE, 1998.

6. P. Drucker. Knowledge-Worker Productivity: The Biggest Challenge. California
Management Review, 41(2):79–94, 1999.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley, July 2004.

8. A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann. Task Taxonomies for Knowl-
edge Content. METOKIS Deliverable, D7:20–42, 2004. http://www.loa-cnr.it/

Papers/D07_v21a.pdf.
9. A. Gangemi and V. Presutti. Handbook on Ontologies, chapter Ontology Design

Patterns. Springer, 2009.
10. P. T. Groth and Y. Gil. A scientific workflow construction command line. In

Intelligent user interfaces. ACM, 2009.
11. M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for

Business Revolution. Harper Paperbacks, 2003.
12. W. Hart-Davidson, C. Spinuzzi, and M. Zachry. Capturing & Visualizing Knowl-

edge Work: Results & Implications of a Pilot Study of Proposal Writing Activity.
In Design of Communication, pages 113–119. ACM, 2007.

13. M. Hepp, R. Belecheanu, J. Domingue, A. FilipowskaG, M. Kaczmarek, T. Kacz-
marek, J. Nitzsche, B. Norton, C. Pedrinaci, D. Roman, et al. Business Process
Modelling Ontology and Mapping to WSMO. Technical report, SUPER Project
IST-026850, 2006.

14. A. Kidd. The marks are on the knowledge worker. In Human Factors in Computing
Systems, pages 186–191. ACM, 1994.

15. I. Nonaka. The Knowledge-Creating Company. Harvard Business Review,
69(6):96–104, 1991.

16. D. Oberle. Semantic Management of Middleware. Springer, 2006.
17. OMG. Business process model and notation (BPMN), version 2.0 beta 2, 2010.

http://www.omg.org/cgi-bin/doc?dtc/10-06-04.pdf.
18. A. Scheer. Aris-Business Process Frameworks. Springer, 1998.
19. S. Schwarz. Task-Konzepte: Struktur und Semantik für Workflows. In Profes-

sionelles Wissesmanagement; Luzern, Switzerland. GI e.V., 2003.
20. S. Schwarz, A. Abecker, H. Maus, and M. Sintek. Anforderungen an die Workflow-

Unterstützung für Wissensintensive Geschäftsprozesse. In Professionelles Wissens-
management; Baden-Baden, Germany, 2001.

21. A. Varzi. Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopol-
ogy. Data & Knowledge Engineering, 20(3):259–286, 1996.

22. W3C. OWL-S, 2004. http://www.w3.org/Submission/OWL-S/.
23. WFMC. Terminology & Glossary. Technical Report WFMC-TC-1011, Version 3.0,

1999. http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf.


